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Overview

• Research questions:
• Does MedNLI contain annotation artifacts?
• If so, how can we characterize them?
• How can we improve the dataset construction process in
knowledge-intensive domains?

• Motivation:
• Improve the robustness of downstream clinical decision support
(CDS) models trained on MedNLI.
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Natural Language Inference (NLI)

Given a premise, p, and associated hypothesis, h, is h:

• Definitely true? (entailed)
• Possibly true? (neutral)
• Definitely false? (contradictory)

As a classification task:

• f : (p,h) ∈ P× H 7→ ℓ ∈ {entailed, neutral, contradictory}
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Domain-Agnostic NLI & Annotation Artifacts

• Neural NLI models require large-scale, labeled datasets.

• Crowd-worker constructed datasets facilitate progress:
• SNLI: 570k pairs; image caption corpus [Bowman et al., 2015]
• MultiNLI: 433k pairs; multiple genres [Williams et al., 2017]

• However, they are found to contain annotation artifacts
• Gururangan et al. [2018]; McCoy et al. [2019]; Poliak et al. [2018];
Tsuchiya [2018]

• Artifacts pose risks: model performance may be overestimated
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MedNLI

• Domain-specific NLI dataset [Romanov and Shivade, 2018]

• Premises are drawn from the Past Medical History
sections of a random subset of clinical notes from
MIMIC-III [Goldberger et al., 2000; Johnson et al., 2016].

• Physicians asked to write one hypothesis per label per premise

Table 1 from Romanov and Shivade [2018]
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MedNLI Contains Annotation Artifacts

• Compare: hypothesis-only
fastText classifer vs.
majority class baseline.

• Results suggest artifacts
exist, confirming findings of
Romanov and Shivade [2018].

• The fastText model is
most likely to misclassify
entailment as neutral and
neutral and contradiction as
entailment.

dev test
majority class 33.3 33.3
fastText 64.8 62.6

Performance (micro F1) of fastText classifier.

entailment neutral contradiction
entailment 255 151 68
neutral 126 290 58
contradiction 69 60 345

Confusion matrix for fastText classifier.

Gururangan et al. [2018]; Joulin et al. [2016]; Poliak et al. [2018]
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Lexical Artifacts by Class

• Top 15 tokens by PMI(token, class) = log2 p(token, class)
p(token,·)p(·,class)

entailment % neutral % contradiction %

just 0.25% cardiogenic_shock 0.33% no_history_of_cancer 0.27%
high_risk 0.26% pelvic_pain 0.30% no_treatment 0.27%
pressors 0.25% joint_pain 0.30% normal_breathing 0.27%
possible 0.26% brain_injury 0.32% no_history_of_falls 0.27%
elevated_blood_pressure 0.26% delerium 0.30% normal_heart_rhythm 0.28%
responsive 0.25% intracranial_pressure 0.30% health 0.26%
comorbidities 0.26% smoking 0.42% normal_head_ct 0.26%
spectrum 0.27% obesity 0.41% normal_vision 0.26%
steroid_medication 0.25% tia 0.32% normal_aortic_valve 0.27%
longer 0.26% acquired 0.31% bradycardic 0.26%
history_of_cancer 0.26% head_injury 0.31% normal_blood_sugars 0.27%
broad 0.26% twins 0.30% normal_creatinine 0.28%
frequent 0.25% fertility 0.30% cancer_history 0.26%
failed 0.26% statin 0.30% cardiac 0.33%
medical 0.29% acute_stroke 0.30% normal_chest 0.28%

% of class training hypotheses containing token; [Gururangan et al., 2018]
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Physician-Annotator Heuristics

• Hypernym heuristic: Let
X := {condition, medication, finding, procedure, event}(∨

X ∈ p
)
∧ (c = ENTAILMENT) ∧ (∃(t, t′) ∈ p× h s.t. t <: t′)

• Probable cause heuristic:

(condition ∈ p)∧(c = NEUTRAL)∧(h provides causal explanation for p)

• Everything’s fine heuristic:

(condition ∈ p∨finding ∈ p)∧(c = CONTRADICTION)∧(h =⇒ ¬p)
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Physician-Annotator Heuristics: χ2 Results

heuristic χ2 p-value top class

hypernym 59.15 1.4e-13‡ entail (45.2%)
probable cause 111.05 7.7e-25‡ neutral (57.8%)
everything fine 874.71 1.1e-190‡ contradict (83.8%)

Results of χ2 test statistic by heuristic, computed using the combined MedNLI
dataset (‡ p < 0.001, † p < 0.01, * p < 0.5). Top class presented with % of heuristic-
satisfying pairs.
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Adversarial Filtering

We employ AFLite to create easy and difficult partitions of
MedNLI [Bras et al., 2020; Sakaguchi et al., 2020]:

model eval dataset full easy (∆) difficult (∆)

no premise majority class dev 0.33 0.34 (+0.01) 0.35 (+0.02)
no premise majority class test 0.33 0.35 (+0.02) 0.37 (+0.04)
no premise fastText dev 0.65 0.67 (+0.02) 0.46 (-0.19)
no premise fastText test 0.63 0.65 (+0.02) 0.4 (-0.23)
with premise majority class dev 0.33 0.45 (+0.12) 0.36 (+0.03)
with premise majority class test 0.33 0.48 (+0.15) 0.37 (+0.04)
with premise fastText dev 0.53 0.6 (+0.07) 0.43 (-0.1)
with premise fastText test 0.51 0.55 (+0.04) 0.4 (-0.11)

Performance (micro F1-score) for the majority class baseline and fastText
classifiers, with and without premise, by partition (e.g., full, easy, difficult).

See  crherlihy/clinical_nli_artifacts for code and partition ids. 9
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NLI Dataset Construction in Knowledge-Intensive Domains

• Zellers et al. [2019] advocate adversarial dataset construction;
this may not scale in domains requiring expert validation.

• In complex domains, information-rich inferences are more
useful for downstream tasks than correct but trivial inferences.

• One option: adopt a mechanism design perspective to
incentivize the production of hypotheses with high downstream
utility [Ho et al., 2015; Liu and Chen, 2017]

• Another option: narrow the generative scope (and room for
reliance on artifacts) by defining a set of inferences deemed to
be useful for a specific task.
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