
Facilitating Clinical Phenotype Development at Scale:
Optimizing the ClarityNLP Platform Using Clinical Trial Data

Christine Herlihy
Georgia Institute of Technology

Atlanta, Georgia
cherlihy@gatech.edu

Charity Hilton
Georgia Institute of Technology

Atlanta, Georgia
cah@gatech.edu

1. Introduction
Our primary objective in this project is to optimize Clari-
tyNLP, an existing open-source platform for computational
phenotyping, such that structured queries containing patient-
level clinical selection criteria can be runmore rapidly against
a given database, without sacrificing accuracy [13]. Such
optimization(s) will reduce the amount of computational
resources required by clinical researchers seeking to se-
lect a subset of patients meeting specific criteria from large
databases containing a variety of structured and unstruc-
tured fields.

This paper proceeds as follows: in Section 2, we outline the
challenges facing clinical researchers seeking to use unstruc-
tured clinical notes for feature engineering and/or patient
selection, and provide a brief discussion of how ClarityNLP
addresses many of these problems but requires modifications
to do so at scale. In Section 3, we discuss the relevance of
computational phenotyping to clinical research, and pro-
vide an overview of the domain-specific benefits of reducing
runtime and/or improving system throughput.

In Section 4, we provide background information on Clar-
ityNLP and its associated structured query language, NLPQL,
aswell as onMIMIC-III, the de-identified patient-level dataset
we will use. In Section 5, we provide an overview of relevant
related works. In Section 6, we outline our methodological
approach to generating a set of synthetic NLPQL queries
whose component clauses will be parameterized in a way
that allows their distribution to roughly approximate the
distribution of clinical trial inclusion criteria found in the
biomedical literature, albeit with adjustments made to ensure
that patients matching the criteria produced are likely to be
present in the MIMIC-III dataset with sufficient frequency
so as to constitute a non-trivial computational load on the
system. In addition, we discuss the set of optimizations we
have investigated and implemented in an effort to reduce
expected runtime.
In Section 7-9, we outline the set of experiments we con-

ducted against the MIMIC-III dataset to evaluate the impact
of our optimizations on expected runtime, holding hardware
specs, synthetic query corpus, and database constant [16].
In Section 10, we outline our thoughts on how this project
might be expanded in future work.

2. Problem Statement
Phenotypes are measurable criteria for classifying a specific
illness or condition. Computational phenotyping refers to
the development of algorithms to identify patients with par-
ticular observable traits associated with a disease or set of
diseases from a broader clinical population [24, 30]. Our ef-
forts in this work are directed at optimizing ClarityNLP, an
existing open-source platform for clinical phenotyping, to re-
duce the expected runtime associated with complex queries
and improve system throughput.
The proper baseline against which all computational ap-

proaches to phenotype development must be compared is
manual chart review, which is the traditional approach to the
identification of patients matching specific inclusion criteria.
Manual chart review must be conducted by researchers with
clinical expertise/training (e.g., physicians, nurses, radiol-
ogists, etc.), and is thus a resource-intensive process that
can take approximately 35-40 minutes, depending on the
complexity of the record(s) and criteria involved [28].

Historically, researchers have relied on rule-based, heuris-
tic approaches and leveraged structured data (e.g., diagnosis
codes; medications; quantitative and/or Boolean lab results;
etc.) found in electronic medical records to define a set of
inclusion and/or exclusion criteria, which they can then use
to extract their patient population(s) of interest.

However, in recent years, the marked increase in available
computational power, coupled with the rise of electronic
medical record (EMR) systems, and the development of in-
creasingly sophisticated neural network architectures, has
sparked an interest in semi-supervised and unsupervised ap-
proaches to phenotype development, leveraging both struc-
tured and unstructured data, including claims data, as well
as clinical notes and genomic data.

In addition, researchers are often interested in traits and/or
behavioral determinants of health that are unlikely to explic-
itly appear in structured data (which is typically optimized
for billing purposes rather than for clinical research), but may
be discoverable and/or extractable when natural language
processing (NLP) methods and/or unsupervised learning
techniques are applied to unstructured clinical notes.
To this end, our team at Georgia Tech Research Institute

has developed ClarityNLP, an open-source platform intended
to help researchers apply NLP methods to unstructured clin-
ical notes data and select patients for inclusion in a given

cohort based on membership in phenotypic sets [13]. The
primary focus during the initial development phase of Clar-
ityNLP has been on delivering expected functionality and
implementing core NLP algorithms; as such, modifications
to the system architecture are required if ClarityNLP is to
be used to efficiently execute increasingly complex queries
over large datasets at scale, and/or in a near real-time envi-
ronment.

3. Relevance
Phenotype development is an important step in many clini-
cal research work-flows, including: (1) feature engineering
for the development of precision-medicine models for a par-
ticular disease or set of related diseases; (2) identification of
patients who are eligible to participate in clinical trials, which
represents a critical step in the research and development
life-cycle for pharmaceutical and medical device companies
as well as regulatory agencies; and (3) genomic research
aimed at identifying and/or understanding the root cause
of many different diagnoses, so as to develop appropriate
treatment options.
To elaborate on (2), clinical trial studies rely on pheno-

type development and patient identification not only for the
purpose of recruitment, but also to evaluate comparator co-
hort studies, and/or conduct retrospective research studies
based on observational data. These studies have gained in
popularity because of their affordability and overall benefit
to patient safety [29].

Hospital systems and regulatory agencies also benefit from
patient identification methods for the purpose of assessing
quality of care, and/or enforcing regulations intended to pro-
tect patient safety. Health care systems are incentivized by
federal agencies to report and improve their performance on
patient-level quality-of-care metrics [19]. Regulatory criteria
for quality can be established by a local hospital system, state
and/or federal law, a national medical association or a federal
agency. Each patient case must be identified and compared
against case criteria as defined by these regulatory bodies.

Phenotype development is an inherently interdisciplinary
task, where clinical researchers with domain expertise work
with computer scientists and biostatisticians to develop and
refine selection criteria. One of the challenges is that medical
constraints must be translated into machine-interpretable
code. This task becomes even more difficult when unstruc-
tured text must be mined in an effort to extract socioeco-
nomic and/or behavioral determinants of health, as unstruc-
tured datasets typically do not have any labeled ground-truth
instances, which means that validation often requires physi-
cians to conduct manual chart review. In such instances,
the availability and affordability of physician labor become
key bottlenecks with the potential to derail and/or delay
otherwise promising research.

Our efforts to optimize ClarityNLP, reduce the computa-
tional cost associated with running complex queries and/or
against large datasets, and allow the platform architecture to
take advantage of multiple cores when possible, are an im-
portant step toward reducing the burden on clinical research
teams and accelerating the pace at which the research these
teams conduct can benefit patients.

4. Background Information
4.1 ClarityNLP
ClarityNLP is an open source, collaborative platform for clin-
ical phenotyping using natural language processing. There
are five principal components to ClarityNLP to prepare and
analyze clinical documents for phenotype identifications:

1. Document Ingestion
2. Data Mapping
3. NLPQL and Data Processing
4. Results and Validation
5. Sharing and Portability

ClarityNLP combines various NLP algorithms to query
and parse data from unstructured clinical text. ClarityNLP is
centralized around NLPQL, a custom query language based
on CQL (clinical query language)[7]. NLPQL allows users
to map documents, term sets, and algorithms, and combine
them with logical operations to build complex, shareable
clinical phenotypes.
ClarityNLP was built at the Georgia Tech Research Insti-

tute, using a Python stack. ClarityNLP incorporates several
libraries, including Luigi (for job and task management),
spaCy and NLTK (for NLP APIs), and Antlr (for query pars-
ing). ClarityNLP stores text documents in Solr and stores
phenotype results in MongoDB. Figure 1 illustrates Clari-
tyNLP’s system architecture.
To date, ClarityNLP’s software development team’s ef-

forts have been focused on: (1) addition of algorithms for
extracting specific clinical information (such as extracting
medications); (2) addition of machine learning models to
extract and classify clinical text; and (3) overall system ar-
chitecture design and development. Our project focuses on
NLPQL and optimization of queries associated with the phe-
notype development lifecycle. NLPQL is discussed in more
detail in the next section.

4.2 NLPQL
ClarityNLP allows users to find data or patients of interest
from unstructured clinical text. Users create a description of
a desired resulting phenotype or data set with the declarative
language NLPQL. An NLPQL “program” is a simple text file
containing NLPQL statements. This text file is essentially
a definition (called a phenotype) of what the user wants to
find, expressed in a portable language.

2

Figure 1. ClarityNLP System Architecture

The purpose of NLPQL is to create a common language
around clinical phenotyping using unstructured data. Ex-
perts can agree on the definition of a particular phenotype
and express the definition in NLPQL. Different institutions
can then use ClarityNLP with an identical NLPQL file to
extract this phenotype from their own proprietary or access-
restricted data sets.

NLPQL has four primary components: (1) documents sets
(or document selection); (2) term sets (or a dictionary of
term); (3) context; (4) data entities (NLP algorithms, e.g. an
algorithm to extract tumor sizes); and (5) operations (logic
operations and comparisons across data entities). NLPQL
can be executed in the user interface or via RESTful API in
ClarityNLP. Execution is distributed across parallel work-
ers using Luigi. More detail on NLPQL is discussed in the
ClarityNLP documentation [14]. An example is shown in
Appendix A.

4.3 MIMIC-III Critical Care Database
The MIMIC-III Critical Care Database is data set containing
information about ICU patients who stayed at the Beth Israel
Deaconess Hospital between 2001 and 2012. MIMIC-III has
multiple types of clinical observational data, including text.
It has been de-identified for research use. Unlike most public
clinical data sets, unstructured text is available in this data
set, making it suitable for clinical NLP research [11, 16].

5. Related Work
There are many existing general-purpose NLP libraries and
platforms, as well as domain-specific clinical decision sup-
port tools, that are designed to process raw text and extract

information. Examples of general purpose NLP libraries in-
clude Gensim, spaCy, the Natural Language Toolkit (NLTK),
Apache OpenNLP and Stanford CoreNLP [1, 2, 10, 21, 23].
In addition, there are general NLP libraries for executing
NLP pipelines, such as Unstructured Information Manage-
ment Architecture (UIMA) and General Architecture for Text
Engineering (GATE)[6, 8].
Examples from the clinical domain include the Apache

Clinical Text Analysis Knowledge Extraction System (cTAKES),
Clinical Language Annotation, Modeling, and Processing
Toolkit (CLAMP) and NOBLE[5, 25, 26].

cTakes is an open-source clinical NLP platform. cTakes
has modules for extracting terms, negation, time expressions
and others. cTakes pipelines run all documents and do not
support logical expressions. CLAMP has multiple modules
for extracting clinical features from text, and provides a
layer of customization, using an integrated development
environment (IDE) and XML files. CLAMP also has user
tools for viewing and annotating results. NOBLE is a general
concept extraction algorithm that runs on top of UIMA or
GATE.
The primary difference between ClarityNLP and these

libraries is NLPQL, which is intended to be a expert-friendly
language for building phenotypes, which also provides an-
other layer of customizability. ClarityNLP can target specific
documents, concept sets, and algorithms and combine them
to form complex phenotypes for patients. ClarityNLP also
focuses on technical flexibility in several ways: (1) Clari-
tyNLP allows users to connect their own custom algorithms
or external web APIs to the ClarityNLP pipeline and NLPQL
queries; (2) ClarityNLP provides an end-to-end setup for stor-
ing source documents and results, and as such, provides a

3

solution for new and less-technically savvy users, including
clinical domain experts.

6. Approach
To develop and evaluate a set of system-level optimizations to
the ClarityNLP platform, we began by generating a represen-
tative set of synthetic NLPQL queries, where the distribution
of various inclusion criteria primitives roughly approximates
the actual distribution of such criteria within the biomedical
literature. To establish a reproducible baseline, we used a
pre-specified sha from the master branch of ClarityNLP (e.g.,
the platform without any query optimizations, cascading
classifiers, or caching) to run this corpus of synthetic queries
against the MIMIC-III dataset, and computed summary sta-
tistics on the resulting query-level runtimes.
With this baseline established, we forked the main Clari-

tyNLP repository and implemented a variety of optimizations
to the underlying system architecture; these optimizations
are discussed in greater detail in subsection 3. We then ran
our synthetic queries against MIMIC-III using different, op-
timized configurations of ClarityNLP, computed summary
statistics, and assessed improvements in runtime relative to
baseline for each optimized configuration observed.

6.1 Synthetic Query Generation
While historical query term and/or clause co-occurrence
patterns would generally represent a logical foundation for
developing schema and/or system architecture-based opti-
mizations, ClarityNLP is a relatively new platform, and as
such, no representative corpus of historical queries exists.We
have adopted a hybrid approach to proxy for such a corpus:
we begin by extracting metadata and inclusion criteria from
the Aggregate Analysis of ClinicalTrials.gov (AACT) Data-
base for all trials that contain explicitly segmented inclusion
criteria (n = 249, 493) [12].
There is no standard or required format (tabular or oth-

erwise) for enumerating clinical trial inclusion and/or ex-
clusion criteria; as such, the inclusion criteria we extract
from the AACT are typically represented as free text, and/or
bulleted lists. There is considerable heterogeneity with re-
spect to the cardinality and restrictiveness of the criteria sets
encountered: while some trials impose a limited number of
high-level restrictions (e.g., gender, wide age range, and a
general diagnosis requirement), others contain a lengthy set
of specific restrictions, (e.g., multiple diagnoses are required,
each of which may be associated with a set of embedded
requirements, such as scores within a specified range).

As our primary aim in synthetic query generation is ensur-
ing the benchmarks we develop and co-occurrence patterns
we identify are representative of real-world workloads, we
consider the development of a robust natural language in-
clusion criteria-to-NLPQL parser to be a subject warranting

future work, and constrain our efforts here to the develop-
ment and detection of a set of inclusion criteria primitives,
ICP , such that ICP ⊊ IC .
We manually reviewed a random subset of the AACT

criteria, and developed an initial set, ICPi : {gender; age;
race; location; condition(s); medication(s)}. To ensure that
the synthetic queries we generate will, on average, return
results rather than ∅, we computed summary statistics of
the MIMIC-III patient population, and used the resulting
distribution over sociodemographic categories, as well as
clinical conditions and medications, to inform selection and
specification of our final inclusion criteria primitives, ICPf :
{gender; race; condition(s); medication(s)}.

We opted to remove the age and location primitives be-
cause: (1) age is de-identified in MIMIC-III, yielding birth
dates that are set in the future and an offset that is (intention-
ally) neither derivable nor consistent across patients; and
(2) all of the MIMIC-III patient records come from a single
location (e.g., the Beth Israel Deaconess Hospital, located in
Boston, Massachusetts). The gender primitive is composed
of two possible criteria: {male; female}; The race primitive
is composed of five possible criteria: {Asian; Black; Native
American; Pacific Islander; White}.

To create the conditions and medications primitives,
we: (1) computed the 10 most commonly occurring condi-
tions and medications within the MIMIC-III patient pop-
ulation; (2) ran each of these terms through ClarityNLP’s
termset-expander function, so that synonyms for these con-
ditions and medications that are common within the clinical
domain will also be detected; and (3) represented each term
or group of expanded terms with a common root/ancestor
as a bit in the final conditions and medications primitives.

To ensure our experimental runs would be tractable given
time and resource constraints, we used the primitives out-
lined above to generate a synthetic corpus of size 10,000, and
then randomly selected 100 NLPQL queries from this corpus.

Figure 2. Synthetic Query Generation Process

4

6.2 Optimizations Implemented
We proposed and implemented two sets of optimizations, seg-
mented into Tier I and Tier II. Tier I optimizations represent
foundational improvements that we expected to result in
improved runtime, while simultaneously laying the ground-
work for more computationally sophisticated, model-based
optimizations. Tier II optimizations required the application
of supervised and/or unsupervised learning techniques, and
the potential payoff associated with these techniques was
less clear prima facie.

We were able to implement the majority of our proposed
optimizations (Tier I: 4 of 6; Tier II: 3 of 4). In some cases,
implementation-related results (e.g., accuracy, frequency
statistics, etc.) indicated that integrating the optimization
into the platform would be unlikely to result in significant
speedup relative to baseline, and thus, a subset of the opti-
mizations we implemented were not ultimately integrated.
Our proposed implementations are described below, and
final implementation/integration status is provided for each.

6.2.1 Tier I Optimizations
As Figure 3 illustrates, we were able to implement 4 of our
6 proposed Tier I optimizations; additional information re-
garding implementation is below:

Figure 3. Tier I Optimizations

1. Allow query chaining:
a. This optimizationwas intended to facilitate the chain-

ing of queries, so that the results of query1 could be
used as input to query2. To implement it, we initially
developed a method to limit the NLPQL query space
as a filter based on previous executed results.

b. The filter can be grouped by: (1) patient id (e.g., limit
query2 to patients found in query1); or (2) by docu-
ment id (limit query2 to documents found in query1).
In order to integrate this optimization into Clari-
tyNLP, we created a pipeline that dynamically gen-
erates a document filter based on the contents of
query1; this filter is then used as an input to query2.

2. Implement least recently used (LRU) caching:
a. LRU caches are memory-based caches which keep

track of access times for each object inserted in the
cache. They have a maximum size parameter, and as

new items are added to the cache, the least recently
used objects are pushed out. LRU caches have na-
tive support in Python [9]. We implemented LRU
caches via the cachetools library. We cached docu-
ments (which have additional metadata and used
from job to job), algorithm modules (which are ini-
tialized with models, dictionaries and regular ex-
pressions), and ClarityNLP results (which are the
primary output generated by experiments.

b. It should be noted that our synthetic query corpus
is particularly well-suited to benefit from caching,
as our synthetic queries are composed only of our
identified set of query primitives. A logical next step
for future work would be to add noise to the query
generation process (e.g., to generate queries contain-
ing both primitives, as well as non-primitive compo-
nents) to assess the benefits of caching given a more
realistic corpus, and/or an engineered change in the
distribution of terms used to construct queries.

3. ReorderNLPQLoperations based ondown-selection:
a. NLPQL queries generally consist of multiple compo-

nent clauses; some of these clauses represent con-
straints on the set of documents that will be returned
(e.g., they may require a certain set of terms to be
present, or require the patient in question to have a
certain diagnosis, etc.).

b. The end user cannot be reasonably expected to write
queries in a sequentially optimal way (e.g., with re-
spect to ordering the clauses in such a way that the
filter clause with highest down-selection potential
is run first, so as to minimize the state space over
which all subsequent computations must be run).

c. Thus, in this optimization, our objective was to: (1)
compute the down-selection potential of each of our
query primitives, and (2) design a pipeline step that
would ingest a synthetic query, detect all primitive(s)
present, and re-order the query to ensure optimal
sequential execution of each component clause with
respect to down-selection.

d. To determine down-selection potential, we identified
the structured data field(s) and/or diagnoses codes
that corresponded to each of our query primitives
in the structured data component of the MIMIC-III
dataset. We then wrote SQL queries to extract all
unique patient ids (for demographic information),
condition occurrences (for conditions), and drug
exposures (for medications) matching each set of
structured field(s). Next, we computed the down-
selection potential of each primitive by calculating
|total_population |− |matches |

|total_population | , and used the resulting per-
centages to rank each primitive. We used these ranks

5

to optimally re-order the sub-clauses within each
synthetic query that we parsed; the associated data
is available in Appendix C.

4. Create additional indices for ClarityNLP results:
a. ClarityNLP evaluates results from two primary data

stores: Solr and MongoDB. In addition, ClarityNLP
stores job and control information in a PostgreSQL
database. Most Solr queries run in ClarityNLP (ob-
served to-date) return in less than 100 milliseconds,
primarily due to Solr’s inverted index. By default,
ClarityNLP has 8 indexes in theMongoDB data stores.
In addition, ClarityNLP has indexes on the Post-
greSQL database to guarantee uniqueness and refer-
ential integrity.

b. After reviewing ClarityNLP’s reads and writes, we
did not observe any missing indexes in ClarityNLP’s
baseline configuration. We thus chose to focus our
efforts on alternate optimizations.

5. Shift computation closer to data sources instead
of loading in-memory on Luigi engine:
a. Data locality optimizations have been part of data

and systems research since the 1990s. Given that
ClarityNLP runs on a virtual machine (VM) architec-
ture, it has less low-level control over data locality.
However, ClarityNLP is still able to benefit from
higher-level optimizations related to its data stores,
specifically MongoDB and Solr.

b. There is an ongoing effort within the main Clar-
ityNLP project to move logical and mathematical
expressions from a Python-based evaluation, using
pandas , to MongoDB using its built-in aддreдate
functionality. We intend to leverage the experimen-
tal framework and synthetic query corpus presented
here to evaluate the effectiveness of this modifica-
tion in future work; however, at present, we elected
to focus our efforts on Solr-specific data locality op-
timizations.

6. Pre-compute & index commonNLP tasks in Solr:
a. Our primary optimization in this area is related to

data locality as discussed above, but also involves
pre-computation of CPU-intensive tasks. Nearly ev-
ery algorithm implemented in ClarityNLP requires
a step that involves document segmentation, either
into sentences, and/or into clinically relevant sec-
tions. These algorithms have been implemented us-
ing a combination of custom libraries and popular
open-source NLP libraries, including spaCy. The re-
sult of this type of segmentation task is static pro-
vided that the underlying document(s) parsed do not
change. As such, this step in the pipeline is a strong
candidate for pre-computation and indexing.

b. To implement this optimization, we: (1) iterated over
each document in our Solr index; (2) ran segmen-
tation by sentence and by section; and (3) stored
the resulting arrays in Solr, reducing the amount of
computation necessary for each job.

6.2.2 Tier II Optimizations
As Figure 4 illustrates, we were able to explore three and
integrate one of our four proposed Tier II optimizations;
additional information regarding implementation is below:

Figure 4. Tier II Optimizations

1. Cache commonly co-occurring predicates’ results:
a. We were motivated to consider this optimization

because we hoped that by storing the results associ-
ated with commonly co-occurring query predicates,
we could reduce the computation in all queries that
included this each identified subset of terms, and use
these cached results as building blocks to efficiently
construct more complex queries.

b. The assumption that certain query predicates would
be more likely to co-occur than others is a realistic
assumptionwithin the domain of clinical research, as
certain predicates are common across the board (e.g.
gender, age, etc.), while others are causally linked
(e.g., certain medications are prescribed to treat cer-
tain conditions; certain conditions are more frequent
among specific sub-populations, etc.).

c. To compute the co-occurrence frequency of each of
our query primitives, we constructed a matrix, A,
by stacking the Boolean-valued feature vectors as-
sociated with each synthetic NLPQL query that we
generated. Specifically, rowi in A represents the fea-
ture vector associated with queryi , and each element
in this row is either 0 or 1 depending on whether the
associated primitive is absent or present in queryi .
We then computed ATA.

d. When we examined the resulting co-occurrence ma-
trix, we found that the majority of query primitives
co-occurred with very low frequency, and only a
small handful of primitives (male, female, glucose)
had significant co-occurrence values; Appendix D
provides a heat-map representation of this co-occurrence

6

matrix. Ultimately, we determined that this optimiza-
tion was unlikely to yield significant speedup, and
focused our attention on alternate optimizations.

e. Given that we synthetically generated our query cor-
pus, it would, of course, be possible to synthetically
generate an alternate corpus and adjust the prob-
ability of inclusion associated with each primitive,
and/or introduce dependencies, in an effort to force
higher levels of co-occurrence; we intend to pursue
this line of inquiry in future work.

2. Train DNNs to compute primitive-level results
a. Our motivation in this optimization was to develop

a series of primitive-level deep neural networks ca-
pable of ingesting the bag-of-words representation
of an NLPQL query and outputting a Boolean label
∈ {0, 1} intended to represent the absence/presence
of the primitive in question within the query [17, 20].

b. To implement this optimization, we ran our single-
primitive NLPQL queries over 51,155 notes, to gener-
ate primitive-level truth values, with a 1 correspond-
ing to the presence of the primitive within a query,
and a 0 corresponding to absence. We then selected
a random sample of 20,000 unique notes from our
initial set of 51,155 notes, and used scikit-learn’s
CountVectorizer to produce a document-term ma-
trix, in which each row represents a note, each col-
umn represents a unigram, and each element in the
matrix represents the count (e.g., number of times
that the term represented by column j appears in the
document represented by row i) [3, 22]. We merged
this document-term matrix with our labels matrix
on report_id.

c. To train our primitive-level DNNs, we used 3-fold
stratified splits for cross-validation, scaled our in-
put document-term vectors, and then used scikit-
learn’s imblearn package, which includes a syn-
thetic minority oversampling function (SMOTE) to
attempt to address the class imbalance of our dataset
[3, 4, 22]. Specifically, a small set of primitives are
over-represented within our synthetic query corpus
(as they are more frequently occurring in our empir-
ical data sources); consequently, the chance that a
given query will contain a less-commonly-occurring
primitive is relatively low, and the distribution of
truth labels for each primitive is thus heavily skewed
toward 0.

d. Our network architecture was relatively simple: it
included 3 hidden layers of size 128, 64, and 10 with
a relu activation function and a sigmoid outer layer
to produce binary labels.

e. We saw significant variation in performance among
different primitives, as well as with respect to dif-
ferent performance metrics. As we are mostly con-
cerned with using DNNs for down-selection and/or
query optimization purposes, it is important that
we are able to catch true positives, even if doing
so requires us to accept a certain number of false
positives, as this smaller dataset of potential posi-
tives can be run through the more expensive NLPQL
pipeline.

f. Time and resource constraints prevented us from
exploring a broader range of network architectures.
While we did find that we were able to obtain rela-
tively high recall by accepting a larger number of
false positives, we were unable to design a network
that struck a computationally acceptable balance
(e.g., to be useful for down-selection purposes, the
DNNs must offer a significant reduction in cardinal-
ity relative to the size of the unfiltered dataset).

g. Results were particularly poor for primitives with
very few positive examples in the dataset. In future
work, we plan to continue iterating over the net-
work architecture design space and leverage the
precision-recall curve to select a more optimal 0-
1 cutoff threshold. Since performance of our DNNs
was not satisfactory enough to result in useful speedup,
we did not integrate these DNNs into the ClarityNLP
pipeline; however, average results over the 3 rounds
of stratified cross validation are presented in Appen-
dix F.

3. Use ML to optimize Luigi parameters:
a. There are two primary configuration parameters

that can be tweaked to modify the way that Luigi ex-
ecutes jobs: batch size, and maximum worker count.
ClarityNLP interacts with the Luigi engine by: (1)
retrieving the corpus size (e.g., the number of doc-
uments); (2) bundling this corpus into tasks, where
the number of tasks is found by dividing the size of
the corpus by the value of the batch size parameter;
and (3) assigning tasks to Luigi workers. Luigi al-
lows jobs up to and including the maximum worker
count to run; all other tasks are queued. The maxi-
mum worker count is CPU-bound.

b. In theory, it is possible to evaluate the impact of
Luigi’s configuration parameters on ClarityNLP’s
runtime performance by running the same set of
NLPQL queries against ClarityNLP instances featur-
ing different combinations of batch size and Luigi
workers.

c. We did explore this relationship by modifying batch
size and/orworker count in some of our optimization
configurations; however, we did not build a model

7

for this task. We found that modifying batch size
did have an impact on performance as discussed in
Section 8.

4. Use an in-memory database for active/recent jobs:
a. Redis is a popular in-memory key-value store. It can

be used with greater persistence as a database, or
more simply as a cache or message broker. Redis
can support a variety of data types, such as strings,
hashes, lists, sets, and sorted sets. It also has atomic
operations for capturing counts and metrics [18].

b. We used Redis primarily as cache, caching the same
types of ClarityNLP data, as described in our LRU
cache implementation.While, it is implemented slightly
differently and has differences in performance. Redis
and the LRU cache in our experiments are roughly
interchangeable. In the case where both are enabled,
Redis is preferred.

6.3 Running Experiments
Since ClarityNLP is centered around Docker, we created a
Docker environment configuration for each optimization.We
configured ClarityNLP to capture the configuration informa-
tion in the PostgreSQL database during each job execution,
for our validation and evaluation. Every optimization we
developed was enabled or disabled via a Boolean flag in the
environment file. We then created a script to move each
environment file from a directory into ClarityNLP, where
we ran each NLPQL job based on the active environment
configuration.

7. Validation
Our primary validation task in this project was to assess
the extent to which the results returned when our synthetic
queries are run against our various optimized configurations
of ClarityNLP match the baseline results.

Figure 5. Validation of Results: Optimized vs. Baseline

Our primary observations from validating our optimiza-
tions against the baseline:

a. Most executions of NLPQL queries return similar re-
sults. Most of the differences are due to missing job
results. This should be studied further.

b. Chaining queries introduced several bugs into Clari-
tyNLP. This optimization should be fully re-implemented
before it can be validated against ClarityNLP’s base-
line.

c. Because batch sizes affect the Solr query by changing
the limit, the Solr sort becomes unpredictable. Chang-
ing batch sizes returns a similar number of results, but
they are not the same exact results.

8. Evaluation
Our primary evaluation criteria that we used to assess the
effectiveness of our optimizations (both standalone, and in
combination) is expected runtime (e.g., average runtime over
all synthetic queries, where n = 96) relative to the baseline
configuration. We find that our optimizations generally re-
sulted in significant speedup relative to baseline, with a few
pointed exceptions.
More specifically, we tested 14 possible combinations (1

which represents the baseline, and 13 which represent con-
figurations which contain either a single optimization or a
combination of optimizations); our 13 optimized configura-
tions achieved a minimum speedup of 0.22, a mean speedup
of 21.89, a median speedup of 8.89, and a maximum speedup
of 66.23 (all relative to the baseline configuration). Appendix
E outlines the optimization-level flags associated with each
of our 14 configurations, while Figure 6 details the average
runtime and speedup relative to baseline achieved by each
configuration.

8.1 Discussion
In general, we found that caching-based optimizations re-
sulted in the largest speedup for ClarityNLP. As mentioned
above, our sample data is biased toward less noise, and thus
this performance boost is expected. However, we would ex-
pect some benefit by using caching even in a more noisy data
set. We found that reordering queries leads to speedup as
well. To achieve optimal benefits of the query reordering op-
timization, primitives should be pre-calculated to determine
optimal down selection potential. In addition, we found that
changes to batch size can have strong negative or positive
changes to ClarityNLP. This is perhaps the easiest optimiza-
tion to make when tuning ClarityNLP for performance.

8

Figure 6. Speedup Relative to Baseline by Configuration

Figure 7. Distribution of Query Runtimes (in log-space) by
Configuration, Baseline and Single Optimizations

Figure 8. Distribution of Query Runtimes (in log-space) by
Configuration, Baseline and Combo Optimizations

Figure 9. Speedup Relative to Baseline by Configuration

8.2 Cache Hit Ratio
For each experiment using caching (LRU cache and Redis),
we evaluated the cache hit ratio (CHR) to better understand
performance gains around caches. Cache hit ratio is a mea-
surement of cache hits to cache queries. Generally, a higher
cache ratio is correlated with greater performance gains. We
found that the LRU cache had a mean CHR of 0.61054 and
Redis had a mean CHR of 0.98554, which is demonstrated in
our results, where Redis-based experiments saw the largest
speedups. See Figure 9.

9. Resources
To evaluate and execute our optimizations, we ran on an
identical environment to the GTRI ClarityNLP research envi-
ronment. The server instance was a PHI-compliant Amazon
Web Services (AWS) server, modeled against them5.2x larдe
specifications. The virtual machine supports 8 vCPUs, 32 GiB
memory, with 10 Gbps network bandwidth, and EBS-based
SSDs, running Ubuntu 18.04.
To train our primitive-level DNNs in parallel, we lever-

aged a private cluster available to GTRI researchers, called
ICEHAMMER [15]. ICEHAMMER is a cluster environment
with 1200 cores, 5TB of memory, 3 IBM POWER8with Nvidia
GPUs, 22 Kepler GPUs, 4 Maxwell GPUs, and 9 Pascal GPUs.
In addition, it is equipped with JupyterHub and Slurm.

10. Future Work
10.1 Experiments
To further evaluate the effectiveness of each optimization,
further experiments could includemore noise within the data
set. More realistic primitives could be evaluated from expert-
defined NLPQL. To evaluate ClarityNLP for a non-clinical
setting, completely synthetic data sets could be utilized. In
addition, the experiments would benefit from additional it-
erations, and additional server environments to evaluate
ClarityNLP performance across different system configura-
tions.

9

10.2 Optimizations
We would like to further explore further optimizations re-
lated to:

1. Tuning configuration parameters in ClarityNLP via
machine learning models, as described in Van Aken,
et al [27]. Candidates for this optimization include:
Luigi workers, batch size, LRU cache size, Solr memory
settings, etc.

2. Improve the performance of DNNs used to predict
note-level labels for query primitives, and, if possible,
integrate them into the pipeline as a computationally
inexpensive down-selection mechanism.

3. Supporting more complex queries for synthetic query
generation and query re-ordering. Our experimental
queries were limited toAND queries. ClarityNLP is ca-
pable of supporting nested queries and mathematical
operators. Our future experiment setups and optimiza-
tions should support these features in ClarityNLP.

4. Updating models and optimizations in an online man-
ner or nightly schedule. Two of our optimizations,
specifically query reordering and DNNs were tailored
to our 27 primitives. These optimizations should be
able to be calculated for the specific data set for a Clari-
tyNLP institution, and updated as Solr data sets change,
taking into consideration measures such as term fre-
quency, term frequency-inverse document frequency
(tf-idf), and potential for downselection.

5. Further evaluate Luigi for resource contention. Over
time, changes in query performance would randomly
spike, even though no other processes were running on
the evaluation server. Further evaluation is needed to
understand and mitigate resource contention around
Luigi jobs.

6. For Redis caching, additional enhancements should
be made to mark the cache as stale, so that values are
refreshed, in the case of system updates to algorithms
or other configuration changes.

7. For Solr pre-computation, tools should be integrated
into ClarityNLP to run segmentation as documents are
ingested into Solr, and should support any additional
improvements to segmentation. In addition, it may
be value to pre-compute other lower-level NLP tasks,
such as part-of-speech tagging.

10.3 Evaluation
In future experiments, we would like to include metrics to
evaluate ClarityNLP performance, including: CPU time, sys-
tem usage, and processing time of each step in an NLPQL job
(this information is available, but we did not include these
times in our evaluation).

11. Conclusion
Our experiments to optimize ClarityNLP were primarily cen-
tered around caching, NLPQL query optimization, shifting
data locality and DNNs. Our optimizations were focused on
areas not currently in active development on the ClarityNLP
project. We showed that given certain query patterns, signif-
icant speedup is achievable. This project is our first step in
optimizing the ClarityNLP platform. We believe these opti-
mizations will contribute to further adoption of ClarityNLP
in the clinical research space and lead to improvements in
rapid, computation-based clinical phenotyping.

References
[1] Explosion AI. 2018. spaCy: Industrial-strength Natural Language

Processing in Python. https://spacy.io/. (Accessed on 10/24/2018).
[2] Steven Bird and Edward Loper. 2004. NLTK: the natural language

toolkit. In Proceedings of the ACL 2004 on Interactive poster and demon-
stration sessions. Association for Computational Linguistics, 209 N.
Eighth Street, Stroudsburg PA 18360, USA, 31.

[3] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, An-
dreas Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexan-
dre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud
Joly, Brian Holt, and Gaël Varoquaux. 2013. API design for machine
learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning.
108–122.

[4] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. 2002. SMOTE: Synthetic Minority Over-sampling Tech-
nique. J. Artif. Int. Res. 16, 1 (June 2002), 321–357. http://dl.acm.org/
citation.cfm?id=1622407.1622416

[5] Mayo Clinic. 2017. Apache cTAKES - clinical Text Analysis Knowledge
Extraction System. http://ctakes.apache.org/index.html. (Accessed on
10/24/2018).

[6] Hamish Cunningham. 2002. GATE, a general architecture for text
engineering. Computers and the Humanities 36, 2 (2002), 223–254.

[7] eCQI Resource Center. 2018. Clinical Query Language. https://ecqi.
healthit.gov/cql-clinical-quality-language. (Accessed on 09/23/2018).

[8] David Ferrucci and Adam Lally. 2004. UIMA: an architectural approach
to unstructured information processing in the corporate research en-
vironment. Natural Language Engineering 10, 3-4 (2004), 327–348.

[9] Python Software Foundation. 2018. Higher-order functions and opera-
tions on callable objects. https://docs.python.org/3/library/functools.
html

[10] The Apache Foundation. 2017. FAQ - Apache OpenNLP. https://
opennlp.apache.org/faq.html. (Accessed on 10/24/2018).

[11] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff,
Plamen Ch Ivanov, Roger G Mark, Joseph E Mietus, George B Moody,
Chung-Kang Peng, and H Eugene Stanley. 2000. PhysioBank, Phys-
ioToolkit, and PhysioNet: components of a new research resource for
complex physiologic signals. Circulation 101, 23 (2000), e215–e220.

[12] Clinical Trials Transformation Initiative. 2018. AACT Database: Clin-
ical Trials Transformation Initiative. https://www.ctti-clinicaltrials.
org/aact-database. (Accessed on 10/25/2018).

[13] Georgia Tech Research Institute. 2018. Clarity NLP. https://github.
com/ClarityNLP. (Accessed on 09/21/2018).

[14] Georgia Tech Research Institute. 2018. Clarity NLP Documentation.
https://clarity-nlp.readthedocs.io/en/latest/. (Accessed on 09/22/2018).

[15] Georgia Tech Research Institute. 2018. ICEHAMMER User Guide.
https://github.gatech.edu/ICEHAMMER/UserGuide. (Accessed on
09/19/2018).

10

https://spacy.io/
http://dl.acm.org/citation.cfm?id=1622407.1622416
http://dl.acm.org/citation.cfm?id=1622407.1622416
http://ctakes.apache.org/index.html
https://ecqi.healthit.gov/cql-clinical-quality-language
https://ecqi.healthit.gov/cql-clinical-quality-language
https://docs.python.org/3/library/functools.html
https://docs.python.org/3/library/functools.html
https://opennlp.apache.org/faq.html
https://opennlp.apache.org/faq.html
https://www.ctti-clinicaltrials.org/aact-database
https://www.ctti-clinicaltrials.org/aact-database
https://github.com/ClarityNLP
https://github.com/ClarityNLP
https://clarity-nlp.readthedocs.io/en/latest/
https://github.gatech.edu/ICEHAMMER/UserGuide

[16] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei,
Mengling Feng, Mohammad Ghassemi, Benjamin Moody, Peter
Szolovits, Leo Anthony Celi, and Roger G Mark. 2016. MIMIC-III, a
freely accessible critical care database. Scientific data 3 (2016), 160035.

[17] Daniel Kang, Peter Bailis, and Matei Zaharia. 2018. BlazeIt: Fast Ex-
ploratory Video Queries using Neural Networks. CoRR abs/1805.01046
(2018). arXiv:1805.01046 http://arxiv.org/abs/1805.01046

[18] Redis Labs. 2018. https://redis.io/
[19] Qi Li, Kristin Melton, Todd Lingren, Eric S Kirkendall, Eric Hall, Haijun

Zhai, Yizhao Ni, Megan Kaiser, Laura Stoutenborough, and Imre Solti.
2014. Phenotyping for patient safety: algorithm development for
electronic health record based automated adverse event and medical
error detection in neonatal intensive care. Journal of the American
Medical Informatics Association 21, 5 (2014), 776–784.

[20] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaud-
huri. 2018. Accelerating Machine Learning Inference with Probabilistic
Predicates. In Proceedings of the 2018 International Conference on Man-
agement of Data (SIGMOD ’18). ACM, New York, NY, USA, 1493–1508.
https://doi.org/10.1145/3183713.3183751

[21] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,
Steven Bethard, and David McClosky. 2014. The Stanford CoreNLP
natural language processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguistics: system demon-
strations. Association for Computational Linguistics, 209 N. Eighth
Street, Stroudsburg PA 18360, USA, 55–60.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

[23] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic
Modelling with Large Corpora. In Proceedings of the LREC 2010 Work-
shop on New Challenges for NLP Frameworks. ELRA, Valletta, Malta,
45–50. http://is.muni.cz/publication/884893/en.

[24] Rachel L Richesson, Jimeng Sun, Jyotishman Pathak, Abel N Kho,
and Joshua C Denny. 2016. Clinical phenotyping in selected national
networks: demonstrating the need for high-throughput, portable, and
computational methods. Artificial intelligence in medicine 71 (2016),
57–61.

[25] Ergin Soysal, Jingqi Wang, Min Jiang, Yonghui Wu, Serguei Pakhomov,
Hongfang Liu, and Hua Xu. 2017. CLAMP–a toolkit for efficiently
building customized clinical natural language processing pipelines.
Journal of the American Medical Informatics Association 25, 3 (2017),
331–336.

[26] Eugene Tseytlin, Kevin Mitchell, Elizabeth Legowski, Julia Corrigan,
Girish Chavan, and Rebecca S Jacobson. 2016. NOBLE–Flexible concept
recognition for large-scale biomedical natural language processing.
BMC bioinformatics 17, 1 (2016), 32.

[27] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang.
2017. Automatic database management system tuning through large-
scale machine learning. In Proceedings of the 2017 ACM International
Conference on Management of Data. ACM, ACM, New York, NY, 1009–
1024.

[28] Meliha Yetisgen, Prescott Klassen, and Peter Tarczy-Hornoch. 2014.
Automating Data Abstraction in a Quality Improvement Platform for
Surgical and Interventional Procedures. eGEMs 2, 1 (2014), 1–7.

[29] Kazuki Yoshida, Daniel H Solomon, and Seoyoung C Kim. 2015. Active-
comparator design and new-user design in observational studies. Na-
ture Reviews Rheumatology 11, 7 (2015), 437.

[30] Sheng Yu, Abhishek Chakrabortty, Katherine P Liao, Tianrun Cai, Ash-
win N Ananthakrishnan, Vivian S Gainer, Susanne E Churchill, Peter
Szolovits, Shawn N Murphy, Isaac S Kohane, et al. 2016. Surrogate-
assisted feature extraction for high-throughput phenotyping. Journal

of the American Medical Informatics Association 24, e1 (2016), e143–
e149.

11

http://arxiv.org/abs/1805.01046
http://arxiv.org/abs/1805.01046
https://redis.io/
https://doi.org/10.1145/3183713.3183751
http://is.muni.cz/publication/884893/en

A Sample NLPQL
//phenotype name
phenotype "Ejection Fraction Values"
version "1";

//include Clarity main NLP libraries
include ClarityCore version "1.0" called
Clarity;

termset EjectionFractionTerms:
["ef","ejection fraction","lvef"];

define EjectionFraction:
Clarity.ValueExtraction({
termset:[EjectionFractionTerms],
minimum_value: "10",
maximum_value: "85"
});

//logical Context (Patient, Document)
context Patient;

define final LowEFPatient:
where EjectionFraction.value <= 30;

12

B Feature to Term Mappings

Feature Terms
female "woman", "women", "female", "girl", "girls", "pregnant",

"menopausal", "postmenopausal"
male "man", "men", "male", "boy", "boys"
asian "asian"
black "black", "african american"
native american "native american", "american indian", "alaska native"
pacific islander "pacific islander", "native hawaiian"
white "white", "caucasian"
glucose "glucose"
potassium "potassium"
docusate "docusate"
heparin "heparin"
magnesium sulfate "magnesium sulfate"
acetaminophen "acetaminophen"
pantoprazole "pantoprazole"
metoprolol "metoprolol"
furosemide "furosemide"
hypertension "hypertension", "high blood pressure"
chf "congestive heart failure","chf", "ccf - congestive cardiac

failure","chf - congestive heart failure","congestive cardiac
failure","congestive heart disease","congestive heart fail-
ure"

afib "atrial fibrillation", "atrial fibrilation", "a fib", "afib", "atrial
fib", "atr fibrillation", "atr fibrilation", "atr fib", "auricular
fibrillation", "auricular fib", "aflutter", "atrial flutter"

diabetes "diabetes","dm"
renal failure "renal failure"
high cholesterol "hyperlipidemia", "high blood cholesterol", "high choles-

terol"
uti "urinary tract infectious disease","uti", "urinary tract in-

fection"
gerd "gastroesophageal reflux","gerd"
arteriosclerosis "arteriosclerosis"
respiratory failure "respiratory failure"

13

C Primitives Ranked by % Downselection (MIMIC-III)
Category Primitive Count % Rank
race pacific islander 0 100.00 1
conditions chf 107 99.98 2
race native american 47 99.90 3
medications pantoprazole 46089 98.93 4
conditions gerd 6326 98.87 5
conditions uti 6578 98.83 6
medications docusate 52667 98.78 7
medications acetaminophen 54257 98.74 8
conditions respiratory failure 8524 98.48 9
medications magnesium sulfate 80516 98.13 10
medications heparin 80977 98.12 11
medications furosemide 104238 97.58 12
conditions arteriosclerosis 14541 97.41 13
conditions high cholesterol 14627 97.40 14
conditions afib 14680 97.39 15
medications metoprolol 114518 97.34 16
conditions diabetes 15796 97.19 17
conditions renal failure 16678 97.03 18
race asian 1691 96.37 19
conditions hypertension 22779 95.94 20
medications potassium 204724 95.24 21
medications glucose 212345 95.06 22
medications sodium chloride 346605 91.94 23
race black 3875 91.67 24
gender female 20399 56.15 25
gender male 26121 43.85 26
race white 33899 27.13 27

14

D Query Primitive Co-occurrence Frequencies

Figure 10. Query Primitive Co-Occurrence Counts Within Synthetic NLPQL Corpus

15

E Configuration Settings

Figure 11. Configuration Flag Settings

F Average Primitive-Level DNN Results

Figure 12. Average Primitive-Level DNN results

16

	1. Introduction
	2. Problem Statement
	3. Relevance
	4. Background Information
	4.1 ClarityNLP
	4.2 NLPQL
	4.3 MIMIC-III Critical Care Database

	5. Related Work
	6. Approach
	6.1 Synthetic Query Generation
	6.2 Optimizations Implemented
	6.3 Running Experiments

	7. Validation
	8. Evaluation
	8.1 Discussion
	8.2 Cache Hit Ratio

	9. Resources
	10. Future Work
	10.1 Experiments
	10.2 Optimizations
	10.3 Evaluation

	11. Conclusion
	References
	A Sample NLPQL
	B Feature to Term Mappings
	C Primitives Ranked by % Downselection (MIMIC-III)
	D Query Primitive Co-occurrence Frequencies
	E Configuration Settings
	F Average Primitive-Level DNN Results

